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Abstract
The specific heat corresponding to the tetragonal-to-cubic transition in
Ca0.04Sr0.96TiO3 perovskite has been measured by conduction calorimetry.
The order parameter of the transition has been obtained by means of neutron
diffraction at low temperatures. Comparison of calorimetric data with the
evolution of the order parameter indicates that this transition seems to follow a
mean field Landau potential as in SrTiO3. The linear behaviour of the excess
of entropy versus temperature suggests that a 2–4 Landau potential is sufficient
to describe the transition.

1. Introduction

For many years, phase transitions in ABO3 perovskites (A = Na, K, Ba, Sr, Ca, Pb, La,
etc, B = Nb, Ta, Ti, Zr, Al, etc) have received wide attention. They are employed as
textbook illustrations of structural phase transitions [1]: many of these perovskite materials
are cubic above a critical temperature at normal pressures and some of them undergo a variety
of temperature-induced structural phase transitions [2–4]. Perovskites display a variety of
electronic properties, from the ferroelectricity of BaTiO3 [5] and the superconductivity of
Ba(Bi1−x Pbx)O3 [6] to the magnetoresistivity of (La1−x Cax )MnO3 [7]. In addition, the
Earth’s lower mantle is believed to be composed mainly of MgSiO3-rich perovskite, and
the understanding of the temperature-and pressure-induced phase transitions in this structure
may be of crucial importance in appreciating the geophysical properties of the lower mantle,
especially near its base.
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In all these areas of research, the influence of dopants, in either the A or the B cation sites
of the perovskite structure, is of interest. The system CaTiO3–SrTiO3 provides an example
of a continuous solid solution with cation substitution, Ca for Sr, on the A site. The Sr-
rich end-member is cubic at room temperature, with space group Pm3m [8]. It exhibits an
antiferrodistortive phase transition (from cubic (Pm3m) to tetragonal (I4/mcm) symmetry)
at 105 K, which results from the freezing of one of the triply degenerate R25 modes in which
adjacent octahedra vibrate about one of the cubic [100] axes [9]. Studies on Ca-doped
SrTiO3 have shown that the antiferrodistortive transition temperature is strongly dependent
on composition, even at extremely low Ca contents. Bianchi et al [10] have found that the
antiferrodistortive transition for the member Ca1−x SrxTiO3 with x = 0.993 occurs at 125 K
while Guzhav et al [11] have reported a transition temperature of 148 K for x = 0.986. A
detailed study on the Sr-rich end of the solid solution below room temperature by Becerro
et al [12] has shown that the cubic-to-tetragonal phase boundary shows a markedly non-linear
behaviour in contrast to the quasi-linear variation of the boundary at lower Sr contents [13]. This
behaviour is due to quantum fluctuations, which enhance the stability of the high-symmetry
phase, reducing the observed transition temperature [14].

Regarding the thermodynamic behaviour, we have recently shown that the cubic–
tetragonal phase transition in pure SrTiO3 follows mean field Landau behaviour, rather than
a Heisenberg model as previously believed [15]. We concluded that this transition is near
to the tricritical point and the coefficients of the corresponding 2–4–6 Landau potential were
reported.

The aim of the present paper is to ascertain whether or not the antiferrodistortive phase
transition in Ca-doped SrTiO3 can also be described effectively using the Landau theory. It
is also important to know whether calcium defects induce fluctuations that cause deviations
from mean field behaviour, and whether the phase transition is of the same character as in
pure SrTiO3. With that in mind, we have selected the Ca0.04Sr0.96TiO3 composition because
it has a significant calcium content, aiding comparison with the end-member. Furthermore,
it displays the cubic–tetragonal transition at a temperature which is inside the temperature
range of our calorimeter. We have recently demonstrated [16] that in order to obtain reliable
conclusions about the behaviour of phase transitions, it is necessary to analyse the correlation
of the order parameter with the transition excess entropy. Otherwise, the study of just one
physical parameter near the transition point might yield erroneous results. Following this
observation, the present study has been accomplished by combining two complementary
techniques: calorimetric measurements have provided the entropy excess of the transition while
in situ neutron diffraction measurements have been used to obtain the temperature dependence
of the driving order parameter.

2. Consequences of Landau potential

According to the classical Landau theory of phase transitions, the excess free energy due to
the transition in a single domain is

�G = 1
2 A(T − Tc)Q2 + 1

4 B Q4 + 1
6 C Q6 + · · · . (1)

This expression leads to a continuous phase transition for A, B , C all positive.
Furthermore, one of B and C is usually small enough (relative to the other) to be neglected.
If B � C we obtain a second-order phase transition with a (2:4) Landau potential. If the
phase transition is near to the tricritical point, as in the case of SrTiO3, neither B nor C can be
neglected.
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The specific heat excess due to a phase transition is

�cp = −T

(
∂2�G

∂T 2

)
Q=Qequilibrium

at Tc; �cp

Tc
= A2

2B
; (2)

in both cases (2–4 or 2–4–6 Landau potential) since the temperature dependence is only in
the first term, and the ratio �cp/Tc = A2/2B must be constant, if the same kind of transition
takes place.

On the other hand, in a 2–4 Landau potential, we have the relationship

�S =
(

∂�G

∂T

)
Q=Qequilibrium

= 1

2
AQ2

equilibrium . (3)

The excess entropy �S is expected to be proportional to the square of the order parameter
Q for any behaviour described by a Landau potential like equation (1). This particular relation
between entropy and order parameter is in principle broken in the asymptotic regime for all
other universality classes [16]. Its experimental checking can thus be an effective way to
distinguish between genuine fluctuation-driven critical behaviour and pure Landau behaviour.

Comparison of the order parameter with that of the excess entropy is therefore a convenient
way to determine whether a given phase transition follows the predictions of Landau theory,
or of some other critical model. The experimental technique is to measure some experimental
quantity that scales in a known way with the order parameter as a function of temperature,
and compare these data with calorimetric measurements of the excess entropy. In this way, we
may test whether or not the proportionality implied by equation (3) is obeyed. By analysing
distinct sets of experimental data for a given phase transition, we have a much more reliable
test of the behaviour of a material.

Thus in a 2–4 Landau potential:

�S = A2

2B
(T − Tc);

so the slope of the excess of entropy versus temperature gives also the relation A2/2B .

3. Experimental details

Ca0.04Sr0.96TiO3 was synthesized by drying CaCO3 (Chempur, 99.9%) and SrCO3 (Aldrich,
99.999%) at 500 ◦C and TiO2 (Aldrich, 99.9%) at 1000 ◦C for 3 h. The mixture of the
stoichiometric amounts was heated to 1300 ◦C at a rate of 20 ◦C h−1 and kept at that temperature
for 4 h. After grinding in an agate mortar, the sample was fired in air at 1600 ◦C for 48 h with
periodic regrinding, and finally rapidly cooled. Analysis by microprobe showed it to be close
to the nominal composition with Sr/(Sr + Ca) = 0.958(17) and homogeneous at the 1% level.
The powder was pressed and sintered at 1600 ◦C for 24 h to produce three pellets of 9 mm
diameter × 3 mm height.

Neutron powder diffraction patterns were recorded using the two-axis diffractometer D1B
at the Institut Laue-Langevin, Grenoble, France. The instrument is equipped with a position-
sensitive detector of 400 cells,which span 80◦ in 2θ . Neutrons of wavelength 2.52 Å were used,
which give the highest neutron flux and a range of adequate scattering vectors. The pellets
were contained in a 10 mm diameter × 70 mm open-ended vanadium sample can which was
connected to the centre stick of a standard cryostat. The sample was cooled down to 20 K and
then heated up at 1 K min−1. Diffraction patterns were recorded continuously every 5 min
while heating up to room temperature. A total of 60 diffraction patterns were obtained as a
function of temperature.



94 M C Gallardo et al

For the measurements of specific heat and latent heat, we used an original experimental
system developed and built by ourselves, which uses the conduction calorimetry method
(also known as microcalorimetry), and is fully described elsewhere [17, 18]. This technique
is based on the measurement of heat flux. The sample is placed between two identical
fluxmeters, each formed of a large number of thermocouples placed electrically in series
and thermally in parallel [19]. Using this method, it is possible to obtain absolute values of
the specific heat of the sample. In addition, the heat flux exchanged by the sample, which
gives the total enthalpy change during the transition, has been measured using a technique
analogous to differential thermal analysis [20]. The measurements of specific heat and heat
flux are made in independent experiments, but using the same calorimeter and sample, and
under the same thermal conditions. Thus it is possible to directly compare the results of
the two experiments. The measurements were carried out cooling the sample from room
temperature in quasi-static conditions, at a constant rate of 0.2 K h−1. As each measurement
of specific heat takes 20 min, we have a point each 0.07 K approximately. The transition
entropy excess is obtained by the integration of the transition specific heat excess. The
analysis of �S, instead of checking directly the expected critical behaviour of the excess
specific heat �c, has the fundamental advantage of using an integrated quantity with a
smooth temperature dependence that is independent of experimental statistical errors in the
measurement of �c.

4. Results

4.1. Neutron diffraction study

As it lies near the Sr-rich end-member of the CaTiO3–SrTiO3 solid solution, Ca0.04Sr0.96TiO3 is
expected to transform from cubic (Pm3m) to tetragonal (I4/mcm) symmetry with decreasing
temperature below RT. The decrease in symmetry from Pm3m (a0a0a0) to I4/mcm (a0a0c−)

is due, mainly, to the tilting of successive octahedra along the [001] axis in opposite senses
about that axis (as indicated by the negative superscript in Glazer’s notation [21]). Figure 1
shows the neutron diffraction patterns of the sample recorded between 35◦ and 115◦ 2θ at
both ≈RT (while heating up from 315 to 320 K) and low temperature (while heating up from
20 to 25 K). The low-temperature pattern exhibits all the reflections expected for the tetragonal
I4/mcm space group. Both 211 and 213 are superlattice reflections which arise due to the
antiphase tilting while the rest correspond to the main perovskite sublattice reflections. With
increasing temperature, the intensity of both of the superlattice reflections decreases until they
simultaneously disappear at ∼225 K. The RT pattern in figure 1 displays, exclusively, the main
perovskite reflections, which can be indexed in the cubic Pm3m space group.

It is well known that the order parameter Q of a transition describes the deviation of
the low-temperature phase from that of the high-temperature phase. A way of experimentally
measuring the order parameter variation is provided through the general relationship 〈Q〉2 ∝ Ik ,
where Ik is the intensity of a superlattice reflection, which appears as a consequence of
the transition [22]. Figure 2 shows the variation with temperature of the square of the
observed structure factors (directly proportional to the intensity) of both the 211 and 213
reflections. These have zero intensity under Pm3m symmetry and become non-zero below the
Pm3m → I4/mcm transition. The low intensity shown by both superlattice reflections, even
at the lowest temperature, gives a high data scatter, and hence the data in figure 2 have been
binned according to temperature. The pattern of intensity behaviour in the whole temperature
range is similar for both reflections: it shows zero value from RT down to ∼235 K and then
increases almost linearly to ∼115 K. Below this temperature the rate of change of superlattice
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Figure 1. Neutron diffraction patterns (λ = 2.52 Å) of Ca0.04Sr0.96TiO3 perovskite recorded while
heating up from 20 to 25 K and from 315 to 320 K at a heating rate of 1 K min−1.

intensity decreases on cooling, so the temperature dependence becomes flatter closer to 0 K.
By making an analogy with similar systems, we interpret this as the influence of quantum
saturation effects. It is not possible to give a definitive saturation temperature for the data,
other than to say that the departure from linearity occurs at temperatures lower than around
115 K.

4.2. Calorimetric study

The measured specific heat of Ca0.04Sr0.96TiO3, from 170 to 260 K, is represented in figure 3.
Directly from this graph, we see that the shape of the anomaly in the specific heat is very
rounded, and it extends over a wide range of temperature. The exact transition temperature,
as the maximum of specific heat, is therefore difficult to determine from this graph. This
shape may be caused by slight inhomogeneities in the Ca distribution, as this would cause the
transformation temperature to vary across the sample. Due to the fact that we use a power
sample, the influence of crystalline surfaces would lead to a similar effect. In spite of this,
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Figure 2. Variations in intensity of the 211 and 213 reflections with increasing temperature. The
data are smoothed by adjacent averaging of three points.
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Figure 3. The specific heat of CaTiO3 (filled squares) between 170 and 260 K from [23]:
experimental data for the specific heat of Ca0.04Sr0.96TiO3 (fill circles). These data have been
obtained by conduction calorimetry, cooling the sample at a constant rate of 0.2 K h−1. The
baseline considered (continuous curve) for this phase transition (see the text) is the second-order
polynomial c = aT 2 + bT + e and a = −0.001 14 J mol−1 K−3, b = 0.7474 J mol−1 K−2,
e = −22.7676 J mol−1 K−1.
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Figure 4. The temperature evolution of the excess entropy obtained by integration of the specific
heat excess. The temperature range is from the transition temperature down to 30◦ below.
The straight line adjusted to the data is �S = a + bT and a = 1.925(3) J mol−1 K−1,
b = −0.0088(2) J mol−1 K−2 = A2/2B corresponding to a 2–4 Landau potential.

we estimate 220 K for the transition temperature, as shown by the onset of the specific heat
excess.

In order to obtain the specific heat excess we must evaluate the baseline for the specific
heat curve. From just the specific heat graph, we cannot establish whether the lower data at
170 K still have a contribution from the singular part of the specific heat or whether they have
reached the baseline.

On the other hand, from figure 2 it is difficult to determine where quantum saturation
starts, but this is clearly below 170 K. Thus, at this temperature there must be some variation
of the entropy, so at this temperature there is still specific heat excess, but, a priori, we cannot
know how much.

At this point we cannot use the traditional way to determine the baseline. To solve this
problem, we take reliable data on the specific heat of CaTiO3 [23] that is a similar material and
does not have any anomaly in the temperature range that we are analysing in Ca0.04Sr0.96TiO3.
These specific heat data are also represented in figure 3. From this graph we can see that up
to 220 K the shapes of the two curves for the specific heat are the same; the only difference
is a translation in the absolute value of the specific heat. This suggests that we can take the
translated curve from CaTiO3 as the baseline for Ca0.04Sr0.96TiO3. The procedure is to fit a
second-order polynomial to the CaTiO3 specific heat data and translate it until it coincides
with the Ca0.04Sr0.96TiO3 specific heat data up to 220 K; this polynomial is also represented in
figure 3. We must point out that the translation only represents 2% of the specific heat absolute
value and may be due only to the different calorimetric technique used for the measurement
of the specific heat.

The analysis of the heat flux does not give any significant anomaly around the transition
temperature, from which we may conclude that the phase transition is second order [20].

In order to compare these results with those on the temperature dependence of the order
parameter, the entropy excess has been calculated by integration of the specific heat excess
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Figure 5. The correlation between the excess entropy and the excess intensity of neutron diffraction
experiments. The straight line through zero adjusted to the data is �S = bI (I in arbitrary units)
and b = 0.0394(9) arbitrary units.

data. Figure 4 shows the entropy excess in a temperature range that spans 30◦ below the
transition temperature. The entropy excess shows, in this interval, an almost linear behaviour,
as was observed in the plot of the intensity of the tetragonal superlattice reflections versus
temperature over the same temperature range.

4.3. Comparing calorimetric and diffraction data

Differences in thermometer calibration and in scanning rates used in the calorimetry and in the
neutron diffraction measurements may explain the different transition temperatures indicated
by the two methods (220 versus 235 K). In particular, one must remember the rather rapid
heating rate employed in the neutron experiment, and the rather large sample size, which
may induce some thermal inertia. For the purpose of direct comparison, the experimental
temperatures have been rescaled so as to bring the cubic–tetragonal transition points for the
two sets into agreement.

Also the entropy excess data have been interpolated to obtain correlation between them
and the order parameter data. The statistical error in entropy is negligible given the high
number of experimental data points.

For every temperature point the values of �S are plotted against the values of the excess
intensity from the neutron diffraction data, and the result is shown in figure 5. This graph shows
that the two quantities are proportional to each other, indicating that this transition follows mean
field Landau behaviour. The fit in figure 5 corresponds to the entire range of data collected
for entropy, from just below Tc to around 30 K below Tc. The data points shown correspond
to temperatures at which discrete measurements of the superlattice intensity have been made.
Knowing now that a Landau potential may be used to describe this transition, we are able to
analyse the excess entropy data in terms of such a model. While linear rescaling of temperature
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for the neutron data has no effect on the thermodynamic character of the behaviour indicated,
we note that this would add a small uncertainty to the accuracy of the derived parameters for
the Landau coefficients.

It is important to note that it is necessary to check, by comparing the order parameter
and entropy excess, whether this transition follows a mean field Landau theory or not, before
analysing the entropy excess versus temperature in the framework of this theory.

Figure 4 shows that �S increases linearly below the transition temperature as the order
parameter increases. At this point, the slope of �S versus temperature is a significant
physical quantity. According to equation (3), in a 2–4 Landau potential, this slope gives a
relation between coefficients A and B and we obtain, from figure 4, a value for A2/2B of
8.8 × 10−3 J K−2 mol−1. For pure SrTiO3, A2/2B = 7.8 × 10−3 J K−2 mol−1 [15]. The two
coefficients are of the same order of magnitude and this indicates that the cubic-to-tetragonal
phase transition in the Ca-doped SrTiO3, although far from the tricritical point, is strongly
related to that in pure SrTiO3.

Since the transition temperature, Tc, for a pure second-order phase transition can be shown
to be equal to B/A we obtain a value of A ≈ 3.9 J mol−1 K−1, and B ≈ 850 J mol−1. Pure
SrTiO3 displays tricritical behaviour [15], with a much smaller value of B , and a larger value
of C . The effect of addition of Ca into the structure on the transition behaviour is, therefore,
to increase the effective transition temperature and move the system away from the tricritical
point, with renormalization of the B-term of the Landau potential.

In this analysis we have not taken into account the quantum saturation shown in Q2 because
we are analysing a temperature interval near the transition where this effect can be neglected.

5. Conclusions

The cubic–tetragonal phase transition in 4% Ca-doped SrTiO3 perovskite is, thermodynami-
cally, second order, and further from tricritical than in pure SrTiO3. The transition temperature,
Tc, is significantly higher than in pure SrTiO3. Both these observations may be understood in
terms of the increase in the coefficient of the fourth-order term in the Landau potential. The
order parameter obtained by means of neutron diffraction and the transition entropy excess
correlate linearly, following Landau predictions. The entropy excess is linear with temperature
down to at least 30 K below the transition temperature, and its slope gives relations between
Landau coefficients similar to those obtained for pure SrTiO3. Following equation (2), both
the transition temperature and the specific heat excess increase with respect to those of pure
SrTiO3, which is compatible with Landau theory.
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